Главная » 2015 » Сентябрь » 30 » Как найти погрешность
02:48
Как найти погрешность

Как найти погрешность

3 методика:ОсновыВычисление погрешности множественных измеренийАрифметические действия с погрешностями

При измерении чего-либо можно предположить, что есть некоторое "истинное значение", которое лежит в пределах диапазона значений, которые вы нашли. Для расчета более точной величины вы должны взять результат измерения и оценить его при прибавлении или вычитании погрешности. Если вы хотите научиться находить такую погрешность, выполните следующие действия.

Шаги

Метод 1 из 3: Основы

  1. 1 Выражайте погрешность правильно. Допустим, при измерении палки ее длина равна 4,2 см плюс-минус один миллиметр. Это означает, что палка примерно равна 4,2 см, но на самом деле может быть немного меньше или больше этого значения - с погрешностью до одного миллиметра.
    • Запишите погрешность как: 4,2 см ± 0,1 см. Вы также можете переписать это как 4,2 см ± 1 мм, так как 0,1 см = 1 мм.
  2. 2 Всегда округляйте значения измерений до того же знака после запятой, что и в погрешности. Результаты измерений, которые учитывают погрешность, как правило, округляются до одной или двух значащих цифр. Наиболее важным моментом является то, что нужно округлить результаты до того же знака после запятой, что и в погрешности, чтобы сохранить соответствие.
    • Если результат измерения 60 см, то и погрешность следует округлять до целого числа. Например, погрешность этого измерения может быть 60 см ± 2 см, но не 60 см ± 2,2 см.
    • Если результат измерения 3,4 см, то погрешность округляется до 0,1 см. Например, погрешность этого измерения может быть 3,4 см ± 0,7 см, но не 3,4 см ± 1 см.
  3. 3 Найдите погрешность. Допустим, вы измеряете линейкой диаметр круглого шара. Это сложно, так как из-за кривизны шара будет трудно померить расстояние между двумя противоположными точками на его поверхности. Скажем, линейка может дать результат с точностью до 0,1 см, но это не значит, что вы можете измерить диаметр с той же точностью.
    • Изучите шар и линейку, чтобы получить представление о том, с какой точностью вы можете измерить диаметр. У стандартной линейки четко видна разметка по 0,5 см, но, возможно, вы сможете измерить диаметр с большей точностью, чем эта. Если вы думаете, что сможете измерить диаметр с точностью до 0,3 см, то погрешность в этом случае равна 0,3 см.
    • Измерим диаметр шара. Допустим, вы получили результат около 7,6 см. Просто укажите результат измерения вместе с погрешностью. Диаметр шара составляет 7,6 см ± 0,3 см.
  4. 4 Рассчитать погрешность измерения одного предмета из нескольких. Скажем, вам даны 10 компакт-дисков (CD), при этом размеры каждого одинаковы. Допустим, вы хотите найти толщину всего одного CD. Эта величина настолько мала, что погрешность практически невозможно вычислить. Тем не менее, чтобы вычислить толщину (и ее погрешность) одного CD, вы можете просто разделить результат измерения (и его погрешность) толщины всех 10 CD, сложенных вместе (один на другого), на общее количество CD.
    • Допустим, что точность измерения стопки CD с помощью линейки 0,2 см. Итак, ваша погрешность ± 0,2 см.
    • Допустим, толщина всех CD равна 22 см.
    • Теперь разделим результат измерения и погрешность на 10 (число всех CD). 22 см/10 = 2,2 см и 0,2 см/10 = 0,02 см. Это означает, что толщина одного компакт-диска 2,20 см ± 0,02 см.
  5. 5 Измерьте несколько раз. Для повышения точности измерений, будь то измерение длины или времени, замерьте искомую величину несколько раз. Вычисление среднего значения из полученных значений увеличит точность измерения и расчета погрешности.

Метод 2 из 3: Вычисление погрешности множественных измерений

  1. 1 Проведите несколько измерений. Допустим, вы хотите найти, сколько времени падает мяч с высоты стола. Чтобы получить наилучшие результаты, измерьте время падения насколько раз, например, пять. Потом вы должны найти среднее значение из пяти полученных значений измерений времени, а затем добавить или вычесть среднеквадратичное отклонение для получения наилучшего результата.
    • Допустим, в результате пяти измерений получены результаты: 0,43 с, 0,52 с, 0,35 с, 0,29 с и 0,49 сек .
  2. 2 Найдите среднее арифметическое. Теперь найдите среднее арифметическое путем суммирования пяти различных результатов измерений и разделив результат на 5 (количество измерений). 0,43 + 0,52 + 0,35к + 0,29 + 0,49 = 2,08 сек. 2,08 / 5 = 0,42 с. Среднее время 0,42 с.
  3. 3 Найдите дисперсию полученных значений. Для этого, во-первых, найдите разницу между каждой из пяти величин и средним арифметическим. Чтобы сделать это, вычтите из каждого результата 0,42 с.
      • 0,43 с - 0,42 с = 0,01 с
      • 0,52 с - 0,42 с = 0,1 с
      • 0,35 с - 0,42 с = -0,07 с
      • 0,29 с - 0,42 с = -0,13 с
      • 0,49 с - 0,42 с = 0,07 с
      • Теперь сложите квадраты этих разниц: (0,01) 2 + (0,1) 2 + (-0,07) 2 + (-0,13) 2 + (0,07) 2 = 0,037 с.
      • Найти среднее арифметическое этой суммы можно, разделив ее на 5: 0,037 / 5 = 0,0074 с.
  4. 4 Найдите среднеквадратичное отклонение. Чтобы найти среднеквадратичное отклонение, просто возьмите квадратный корень из среднего арифметического суммы квадратов. Квадратный корень из 0,0074 = 0,09 с, так что среднеквадратичное отклонение равно 0,09 с.
  5. 5 Запишите окончательный ответ. Чтобы сделать это, запишите среднее значение всех измерений плюс-минус среднеквадратичное отклонение. Поскольку среднее значение всех измерений равно 0,42 с, а среднеквадратичное отклонение 0,09 с, то окончательный ответ 0,42 с ± 0,09 с.

Метод 3 из 3: Арифметические действия с погрешностями

  1. 1 Сложение. Чтобы сложить величины с погрешностями, сложите отдельно величины и отдельно погрешности.
    • (5 см ± 0,2 см) + (3 см ± 0,1 см) =
    • (5 см + 3 см) ± (0,2 см + 0,1 см) =
    • 8 см ± 0,3 см
  2. 2 Вычитание. Чтобы вычесть величины с погрешностями, вычтите величины и сложите погрешности.
    • (10 см ± 0,4 см) - (3 см ± 0,2 см) =
    • (10 см - 3 см) ± (0,4 см + 0,2 см) =
    • 7 см ± 0,6 см
  3. 3 Умножение. Чтобы умножить величины с погрешностями, перемножьте величины и сложите погрешности.
    • (6 см ± 0,2 см) х (4 см ± 0,3 см) =
    • (6 см х 4 см) ± (0,2 см + 0,3 см) =
    • 24 см ± 0,5 см
  4. 4 Деление. Чтобы разделить величины с погрешностями, разделите величины и сложите погрешности.
    • (10 см ± 0,6 см) ÷ (5 см ± 0,2 см) =
    • (10 см ÷ 5 см) ± (0,6 см + 0,2 см) =
    • 2 см ± 0,8 см
  5. 5 Возведение в степень. Для того, чтобы возвести в степень величину с погрешностью, возведите величину в степень, а погрешность умножьте на степень.
    • (2,0 см ± 1,0 см ) 3 =
    • (2,0 см) 3 ± (1,0 см) х 3 =
    • 8,0 см ± 3 см

Советы

  • Вы можете дать погрешность как для общего результата всех измерений, так и для каждого результата одного измерения в отдельности.

Предупреждения

  • Точные науки никогда не работают с "истинными" величинами. Хотя правильное измерение, скорее всего, даст величину в пределах погрешности, нет никакой гарантии, что это будет так. Научные измерения допускают возможность ошибок.
  • Погрешности, описанные здесь, применимы только для случаев нормального распределения (распределения Гаусса). Другие распределения вероятностей требуют других решений.
Категория: Вопросы и ответы | Просмотров: 2052 | | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]