Главная » 2015 » Октябрь » 2 » Как найти радиус шара
04:10
Как найти радиус шара

Как найти радиус шара

2 методика:Вычисление радиуса по основным величинамВычисление радиуса по центру шара и точке на его поверхности

Радиус шара (r или R) – отрезок, соединяющий центр шара и любую точку на его поверхности. Значение радиуса используется для вычисления диаметра, длины окружности, площади поверхности и объема. Зная перечисленные величины, вы можете найти радиус шара.

Шаги

Метод 1 из 2: Вычисление радиуса по основным величинам

Определение основных величин

  1. 1 Радиус можно найти по известным значениям основных величин шара. К таким величинам относятся:
    • Диаметр (D) (отрезок, соединяющей две точки на поверхности шара и проходящий через центр шара).
    • Длина окружности (C) (длина окружности большого круга – круга, образуемого секущей плоскостью, проходящей через центр шара).
    • Объем (V) (значение трехмерного пространства, занимаемого шаром).
    • Площадь поверхности (A) (значение двумерного пространства, ограниченного поверхностью шара).
    • Число Пи (π) (математическая постоянная, равная отношению длины окружности к ее диаметру; это число применяется при вычислении всех основных величин и обычно округляется до 3,14).
  2. 2 Ниже приведены формулы для вычисления основных величин; каждая формула включает радиус. Запомните: обособив радиус на одной стороне формулы, вы сможете найти его по известным значениям основных величин.
    • D = 2r. Диаметр вдвое больше радиуса.
    • С = πD = 2πr. Длина окружности равна произведению π на ее диаметр. Так как диаметр в два раза больше радиуса, то длина окружности равна произведению π на двойку и на радиус этой окружности.
    • V = (4/3) πr3. Объем шара равен произведению 4/3 на радиус в кубе и на π.
    • A = 4πr2. Площадь поверхности шара равна произведению квадрата его радиуса на π и на 4.

Вычисление радиуса по формулам

  1. 1 Если вам дан диаметр, разделите его пополам (на 2) и получите радиус. Так как D = 2r, то r =D/2.
    • Например, если диаметр шара равен 16 см, то радиус шара равен 16/2 = 8 см.
  2. 2 Если вам дана длина окружности, разделите ее на 2π и получите радиус. Так как C = 2πr, то r = C/2π.
    • Например, если длина окружности шара равна 20 м, то радиус шара: 20/2π = 3,183 м.
  3. 3 Если вам дан объем шара, то радиус шара вычисляется по формуле: r = ((V/π)(3/4))1/3. То есть объем делится на π, результат умножается на 3/4 и полученный результат возводится в степень 1/3 (или извлекается кубический корень).
    • Например, если объем шара равен 100 см3, то радиус шара вычисляется следующим образом:
      • ((V/π)(3/4))1/3 = r
      • ((100/π)(3/4))1/3 = r
      • ((31,83)(3/4))1/3 = r
      • (23,87)1/3 = r
      • r = 2,88 см
  4. 4 Если вам дана площадь поверхности шара, разделите ее на 4π и из полученного значения извлеките квадратный корень, чтобы найти радиус. Так как А = 4πr2, то r = √(A/4π).
    • Например, площадь поверхности шара равна 1200 см2. Радиус шара вычисляется следующим образом:
      • √ (A / (4π)) = г
      • √ (1200 / (4π)) = г
      • √ (300 / (π)) = г
      • √ (95,49) = г
      • r = 9,77 см

Метод 2 из 2: Вычисление радиуса по центру шара и точке на его поверхности

  1. 1 Найдите координаты (х, у, z) центральной точки шара. Это точка, равноудаленная от любой точки на поверхности шара. Зная координаты центра шара и любой точки на его поверхности вы можете найти расстояние между этими точками, которое и равно радиусу шара. Обратите внимание, что точки шара имеют трехмерные координаты (х, у, z).
    • Пример. Дан шар, центр которого имеет координаты (4, -1, 12).
  2. 2 Найдите координаты (х, у, z) любой точки на поверхности шара.
    • Пример. Точка на поверхности шара имеет координаты (3, 3, 0).
  3. 3 Радиус шара вычисляется по формуле d = √((x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2), где d – расстояние между точками, (x1,y1,z1) – координаты центральной точки шара, (x2,y2,z2) – координаты точки на поверхности шара.
    • В нашем примере вместо (x1,y1,z1) подставьте (4, -1, 12), а вместо (x2,y2,z2) - (3, 3, 0).
      • d = √((x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2)
      • d = √((3 - 4)2 + (3 - -1)2 + (0 - 12)2)
      • d = √((-1)2 + (4)2 + (-12)2)
      • d = √(1 + 16 + 144)
      • d = √(161)
      • d = 12,69. Это радиус шара.
  4. 4 В общих случаях r = √((x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2). Каждая точка, лежащая на поверхности шара, равноудалена от его центра. Если мы возьмем формулу для вычисления расстояния между двумя точками и заменим в ней d на r, то мы получим формулу для вычисления радиуса шара.
    • Возведем в квадрат обе части формулы и получим r2 = (x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2. Обратите внимание, что эта формула напоминает уравнение сферы r2 = x2 + y2 + z2 при условии, что центр сферы имеет координаты (0,0,0).

Советы

  • Соблюдайте определенный порядок выполнения математических операций – начинайте с выражения в скобках, затем возводите в степень/извлекайте корень, затем умножайте/делите, а затем суммируйте/вычитайте.
  • Если вы сталкиваетесь с объемными фигурами впервые, лучше начать их изучение не с вычисления радиуса, а с нахождения основных величин (см. выше в этой статье).
  • π – это математическая константа, равная отношение длины окружности к ее диаметру. Это иррациональное число, которое не может быть записано в виде отношения действительных чисел. В большинстве случаев можно использовать приблизительное значение 3,14.
Категория: Вопросы и ответы | Просмотров: 4337 | | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]