Главная » 2015 » Сентябрь » 29 » Как найти периметр треугольника
02:23
Как найти периметр треугольника

Как найти периметр треугольника

3 методика:По трем данным сторонамПо двум данным сторонам прямоугольного треугольникаПо двум данным сторонам и углу между ними

Периметр – это общая длина границ двумерной формы.[1] Если вы хотите найти периметр треугольника, то вы должны сложить длины всех его сторон; если вы не знаете длину хотя бы одной стороны треугольника, необходимо найти ее. Эта статья расскажет вам, (а) как найти периметр треугольника по трем известным сторонам; (б) как найти периметр прямоугольного треугольника, когда известны только две стороны; (в) как найти периметр любого треугольника, когда даны две стороны и угол между ними (используя теорему косинусов).

Шаги

Метод 1 из 3: По трем данным сторонам

  1. 1 Для нахождения периметра используйте формулу: Р = a + b + c, где a, b, c – длины трех сторон, Р – периметр.
  2. 2 Найдите длины всех трех сторон. В нашем примере: a = 5, b = 5, с = 5.
    • Это равносторонний треугольник, так как все три стороны имеют одинаковую длину. Но вышеуказанная формула применяется к любому треугольнику.
  3. 3 Сложите длины всех трех сторон, чтобы найти периметр. В нашем примере: 5 + 5 + 5 = 15, то есть Р = 15.
    • Другой пример: a = 4, b = 3, с = 5. Р = 3 + 4 + 5 = 12.
  4. 4 В ответе не забывайте указывать единицу измерения. В нашем примере стороны измеряются в сантиметрах, поэтому ваш окончательный ответ также должен включать сантиметры (или единицы измерения, указанные в условии задачи).
    • В нашем примере каждая сторона равна 5 см, поэтому окончательный ответ: Р = 15 см.

Метод 2 из 3: По двум данным сторонам прямоугольного треугольника

  1. 1 Вспомните теорему Пифагора. Эта теорема описывает соотношение между сторонами прямоугольного треугольника и является одной из наиболее известных и применяемых теорем математики.[2] Теорема гласит, что в любом прямоугольном треугольнике стороны связаны следующим соотношением: a2 + b2 = c2, где а, b – катеты, с – гипотенуза.[3]
  2. 2 Нарисуйте треугольник и обозначьте стороны как a, b, c. Самая длинная сторона прямоугольного треугольника – это гипотенуза. Она лежит напротив прямого угла. Обозначьте гипотенузу как «с». Катеты (стороны, прилежащие к прямому углу) обозначьте как «a» и «b».
  3. 3 Подставьте значения известных сторон в теорему Пифагора (a2 + b2 = c2). Вместо букв подставьте числа, данные в условии задачи.
    • Например, а = 3 и b = 4. Подставьте эти значения в теорему Пифагора: 32 + 42 = c2.
    • Другой пример: а = 6 и с = 10. Тогда: 62 + b2 = 102
  4. 4 Решите полученное уравнение, чтобы найти неизвестную сторону. Для этого сначала возведите в квадрат известные длины сторон (просто умножьте данное вам число само на себя). Если вы ищете гипотенузу, сложите квадраты двух сторон и из полученной суммы извлеките квадратный корень. Если вы ищете катет, вычтите квадрат известного катета из квадрата гипотенузы и из полученного частного извлеките квадратный корень.
    • В первом примере: 32 + 42 = c2; 9 + 16 = c2; 25= c2; √25 = с. Таким образом, c = 25.
    • Во втором примере: 62 + b2 = 102; 36 + b2 = 100. Перенесите 36 на правую сторону уравнения и получите: b2 = 64; b = √64. Таким образом, b = 8.
  5. 5 Сложите длины трех сторон, чтобы найти периметр. Напомним, что периметр вычисляется по формуле: P = a + b + c.
    • В нашем первом примере: P = 3 + 4 + 5 = 12.
    • В нашем втором примере: P = 6 + 8 + 10 = 24.

Метод 3 из 3: По двум данным сторонам и углу между ними

  1. 1 Любую сторону треугольника можно найти по теореме косинусов, если вам даны две стороны и угол между ними. Эта теорема применяется к любым треугольникам и является очень полезной формулой. Теорема косинусов: c2 = a2 + b2 - 2abcos(C), где a, b, c – стороны треугольника, А, B, С – углы, противолежащие соответствующим сторонам треугольника. [4][5]
  2. 2 Нарисуйте треугольник и обозначьте стороны как a, b, c; обозначьте противолежащие соответствующим сторонам углы как A, B, C (то есть угол, противолежащий стороне «а», обозначьте как «А» и так далее).
    • Например, дан треугольник со сторонами 10 и 12 и углом между ними в 97°, то есть a = 10, b = 12, C = 97°.
  3. 3 Подставьте данные вам значения в формулу и найдите неизвестную сторону «с». Сначала возведите в квадрат длины известных сторон и сложите полученные значения. Затем найдите косинус угла С (с помощью калькулятора или онлайн-калькулятора).[6] Умножьте длины известных сторон на косинус данного угла и на 2 (2abcos(C)). Полученное значение вычтите из суммы квадратов двух сторон (a2 + b2), и вы получите c2. Из этой величины извлеките квадратный корень, чтобы найти длину неизвестной стороны «с». В нашем примере:
    • c2 = 102 + 122 - 2 × 10 × 12 × cos(97)
    • c2 = 100 + 144 – (240 × -0,12187)
    • c2 = 244 – (-29,25)
    • c2 = 244 + 29,25
    • c2 = 273,25
    • c = 16,53
  4. 4 Сложите длины трех сторон, чтобы найти периметр. Напомним, что периметр вычисляется по формуле: P = a + b + c.
    • В нашем примере: Р = 10 + 12 + 16,53 = 38,53.
Категория: Вопросы и ответы | Просмотров: 498 | | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]